Gene Expression Data Mining for Functional Genomics using Fuzzy Technology

نویسندگان

  • Reinhard Guthke
  • Wolfgang Schmidt-Heck
  • Daniel Hahn
  • Michael Pfaff
چکیده

Methods for supervised and unsupervised clustering and machine learning were studied in order to automatically model relationships between gene expression data and gene functions of the microorganism Escherichia coli. From a pre-selected subset of 265 genes (belonging to 3 functional groups) the function has been predicted with an accuracy of 63-71 % by various data mining methods described in this paper. Whereas some of these methods, i.e. K-means clustering, Kohonen’s self-organizing maps (SOM), Eisen’s hierarchical clustering and Quinlan’s C4.5 decision tree induction algorithm have been applied to gene expression data analysis in the literature already, the fuzzy approach for gene expression data analysis is introduced by the authors. The fuzzy-C-means algorithm (FCM) and the Gustafson-Kessel algorithm for unsupervised clustering as well as the Adaptive Neuro-Fuzzy Inference System (ANFIS) were successfully applied to the functional classification of E. coli genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Mining Approach for Gene Clustering and Gene Function Prediction

Microarray technology helps biologists for monitoring expression of thousands of genes in a single experiment on a small chip. Microarray is also called as DNA chip, gene chip, or biochip is used to analyze the gene expression profiles. After genome sequencing, DNA microarray analysis has become the most widely used functional genomics approach in the bioinformatics field. Biologists are vastly...

متن کامل

Gene Expression Data Mining for Functional Genomics

Methods for supervised and unsupervised clustering and machine learning were studied in order to automatically model relationships between gene expression data and gene functions of the microorganism Escherichia coli. From a pre-selected subset of 265 genes (belonging to 3 functional groups) the function has been predicted with an accuracy higher than 50 % by various data mining methods describ...

متن کامل

A Parallel Multi Objective Optimization Genetic Algorithm Gene Feature Selection on Microarray Based Cancer Classification Using Neuro-Fuzzy Inference System

Feature selection has played a very important role in the field of data mining and machine learning. The high performance parallel and distributed computing is used for gene expression analysis and finding the thousands of genes simultaneously. The classification and validation of molecular biomarkers for cancer diagnosis is an important problem in cancer genomics. The microarray data analysis ...

متن کامل

Prediction of Acid Mine Drainage Generation Potential of A Copper Mine Tailings Using Gene Expression Programming-A Case Study

This work presents a quantitative predicting likely acid mine drainage (AMD) generation process throughout tailing particles resulting from the Sarcheshmeh copper mine in the south of Iran. Indeed, four predictive relationships for the remaining pyrite fraction, remaining chalcopyrite fraction, sulfate concentration, and pH have been suggested by applying the gene expression programming (GEP) a...

متن کامل

Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis

Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002